1.0	
Reg. No. :	

Question Paper Code: 21453

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Electronics and Communication Engineering

EC 2302/EC 52 - DIGITAL SIGNAL PROCESSING

(Regulations 2008)

(Common to PTEC 2302 - Digital Signal Processing for B.E. (Part-Time) Fourth Semester - ECE — Regulations 2009)

Time: Three hours

Maximum 100 marks

Answer ALL questions.

PART A - (10 × 2 = 20 marks)

- State the difference between DFT and DTFT.
- 2. What is bit reversal?
- 3. Distinguish between Butterworth and Chebyshev filter.
- 4. What is prewarping?
- State the properties of FIR filter.
- 6. Give the desirable characteristics of the window.
- 7. What is meant by fixed point arithmetic? Give example.
- Explain the meaning of limit cycle oscillator.
- 9. What is anti-imaging filter?
- 10. Give the applications of multi-rate DSP.

PART B $-(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) State the following properties of DFT.
 - (1) Time reversal
 - (2) Parsavel's theorem.

(8)

(ii) Perform the linear convolution of the given sequences $x(n) = \{1,-1,1,-1\}, h(n) = \{1,2,3,4\}$ using DFT method. (8)

 O_{2}

(b) Derive the butterfly diagram of 8 point radix-2 DIF-FFT algorithm and fully label it. 12. (a) Explain the butterworth filter approximation.

(16)

O

- (b) Explain the bilinear transform method of IR filter design. What is warping effect? Explain the poles and zeros mapping procedure clearly. (16)
- 13. (a) (i) A low pass filter has the desired response as given below

$$H_d \left(e^{j\omega} \right) = \begin{cases} e^{-j3\omega}, & 0 \le \omega < \frac{\pi}{2} \\ \\ 0, & \frac{\pi}{2} \le \omega \le \pi \end{cases}$$

Determine the filter coefficients h(n) for M = 7, using type-I frequency sampling technique. (10)

(ii) What is a linear phase filter? What are the conditions to be satisfied by the impulse response of an FIR system in order to have a linear phase? (6)

Or

- (b) Design a bandpass filter which approximates the ideal filter with cut off frequencies at 0.2 rad / sec and 0.3 rad / sec. The filter order is M = 7. Use the Hanning window function. (16)
- 14. (a) (i) Discuss the various common methods of quantization. (8)
 - (ii) Explain the finite word length effects in FIR digital filters. (8)

Or

- (b) Describe the quantization in floating point realization of IIR digital filters. (16)
- 15. (a) Explain the polyphase implementation of FIR filters for interpolator and decimators. (16)

Or

- (b) (i) Describe the following:
 - (1) Over sampling A/D converter.
 - (2) Over sampling D/A converter. (19)
 - (ii) State the various applications of multirate signal processing. (6)

2